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Abstract. Using the symmetry properties of the strong interaction, such as the Pauli principle, the
P -invariance, the conservation of the total angular momentum and isotopic invariance, we establish the
spin structure of the threshold matrix elements for the processes p+ p→ Θ+ +Σ+ and n+ p→ Θ+ +Λ0,
in the near-threshold region, in a model-independent way, which applies to any spin and parity of the
Θ+-hyperon. We predict the double-spin observables for these processes, such as the dependence of the
differential cross-section on the polarizations of the colliding nucleons, and the coefficients of polarization
transfer from a nucleon beam or target to the produced Σ+- or Λ0-hyperon. We prove that these observ-
ables are sensitive to the P -parity of the Θ+-baryon, for any value of its spin. As an example of dynamical
considerations, we analyzed these reactions in the framework of K-meson exchange.

PACS. 13.88.+e Polarization in interactions and scattering – 13.75.-n Hadron-induced low- and
intermediate-energy reactions and scattering (energy ≤ 10 GeV) – 14.20.Jn Hyperons

1 Introduction

The quantum numbers of the possible pentaquark state
Θ(1540) is object of intensive experimental and theoretical
considerations. In particular, the P -parity of this baryon
is important in order to disentangle different models [1–8].
In principle, specific polarization phenomena in differ-

ent reactions, such as γ+N → Θ++K [9], π+N → Θ++K
and K + N → π+ + Θ+ [10,11], p + p → Θ+ + Σ+ [12,
13], n + p → Θ+ + Λ0 [14,15], p + p → π+ + Λ0 +
Θ+ [9,16] . . . , can constitute the tool for an adequate
and model-independent way for the determination of the
P -parity of the Θ-hyperon. However, the above-listed re-
actions can be used only if one knows some other quan-
tum numbers of Θ, such as the spin, or, in some cases,
the isospin. In general, the mass and the total width do
not enter in such considerations. In the reactions involv-
ing the K-meson (in initial or in final states) the P -parity
of the K-meson has to be known. A typical assumption
is that the K-meson is pseudoscalar, following the quark
model, but, up to now, there are only indirect experimen-
tal indications. We may remind that, in the beginning
of photo- and electroproduction studies, both values were
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considered in the interpretation of the data, [17]. This
problem is crucial in the context of the Θ-classification,
as the main Θ+-decay, Θ+ → NK, being a strong decay,
is controlled by the kaon P -parity.

The purpose of this paper is to generalize the analysis
of the determination of the P -parity of the Θ+-baryon,
produced in the simplest reactions of the NN interaction,
p+p→ Θ++Σ+ and n+p→ Θ++Λ0, to the case of an ar-
bitrary spin of the Θ+-hyperon. This analysis can be done
in a model-independent form, using the basic symmetry
properties of the strong interaction, and does not need any
specific dynamical assumptions for the above-mentioned
processes. This problem has been analyzed in frame of a
different formalism [18].

The central point of this analysis is based on the ob-
servation that there is a kinematical region near the re-
action threshold, where the final baryons are produced in
S-state [19]. This region has an extension in the variable
Q (Q =

√
s −M1 −M2, s is the square of the total en-

ergy of the colliding nucleons, M1 and M2 are the masses
of the produced hyperons), which is related to the finite
radius of the strong interaction. Note that, for the pro-
duction of strange particles, in NN collisions, such radius
is expected to be of the order of 1/mK , mK is the kaon
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mass. Therefore, the corresponding threshold region, with
S-wave production, is expected to be quite wide.
This paper is organized as follows. In sect. 2 we con-

sider the production of Θ+-baryon with jP = 3/2±. We
establish the spin structure of the threshold matrix ele-
ments for p + p → Θ+ + Σ+ and n + p → Θ+ + Λ0, and
analyze double-spin polarization observables, sensitive to
the parity of the Θ+-hyperon. The generalization on the
case of any spin of the Θ+-hyperon is done in sect. 3.

2 The reaction N+ N → Y +Θ+, Y = Λ or

Σ, jP(Θ+) = 3/2±

The simplest reactions of Θ+ production in
nucleon-nucleon collisions, p + p → Σ+ + Θ+ and
n + p → Λ0 + Θ+, with the lowest threshold energy
EL = 3.03 GeV (threshold momentum pL = 2.88 GeV)
and 2.82 GeV (pL = 2.66 GeV), respectively, seem good
candidates for the determination of the P -parity of the
Θ+-hyperon, through the measurement of different polar-
ization observables. The polarization transfer coefficient
from the initial nucleon (beam or target) to the produced
Y -hyperon, is relatively easy to measure, because the Λ0-
and the Σ+-hyperons are self-analyzing particles.
Note, in this respect, that the DISTO Collaboration

showed the feasibility of this method, by measuring the
Dnn coefficient at proton momentum of 3.67 GeV/c, which
showed that “Dnn is large and negative (' −0.4) over
most of the kinematic region” [20]. It was mentioned in [16]
that a nonzero value of Dnn, in the threshold region,
can be considered as the experimental confirmation of the
pseudoscalar nature of the K+-meson.
Polarization effects in N + N → Y + Θ+ for jP =

1/2±, have been studied earlier [12,14,15,13], where it
was shown that at least two observables, Ayy and Dyy
are sensitive to the parity of the Θ+-hyperon, in different
ways for p+ p→ Σ+ +Θ+ and n+ p→ Λ0 +Θ+.
A similar derivation will be done for a more compli-

cated case, jP = 3/2±, in the following sections.

2.1 The reaction n+ p → Λ0 +Θ+, jP(Θ+) = 3/2−

The selection rules with respect to the strong interaction
allow a single threshold partial transition:

Si = 0, `i = 1→ J P = 1− → Sf = 1, `f = 0, (1)

where Si and `i (Sf and `f ) are the total spin and angular
orbital momentum of the initial (final) baryons, J P is
the total angular momentum and P -parity of the colliding
nucleons. We assume, all along this work, that the isotopic
spin of the Θ+-hyperon is equal to zero. This assumption
is important only for n+p→ Θ++Λ0 but not for p+p→
Θ+ +Σ+.
Therefore transition (1) results from the generalized

Pauli principle. The corresponding matrix element can be
written as

M(−)
Λ = f

(−)
Λ (χ̃2σyχ1)(χ

†
4σyχ̃

†
3), χ4 = χak̂a = χ · k̂, (2)

where k̂ is the unit vector along the three-momentum
of the colliding nucleons, in the reaction CM system, χ1

and χ2 are the two-component spinors of the initial nu-
cleons, χ3 is the two-component spinor of the produced
Λ-hyperon and χa is the two-component spinor with three-
vector index a, describing the polarization properties of
the Θ+ with spin 3/2, obeying the following condition:

σ · χ = 0, (3)

and, finally, f
(−)
Λ is the partial amplitude for the singlet

np interaction.
Equation (3) allows to derive the dependence of the

differential (and total) cross-section on the polarizations
P1 and P2 of the colliding nucleons:

dσ

dΩ

(−)

(P1,P2) =

(

dσ

dΩ

)

0

(1−P1 ·P2), (4)

independently of the amplitude f
(−)
Λ , i.e. independently

of the concrete dynamics for the considered reaction.
It is straightforward to show that all polarization

transfer coefficients, characterizing the dependence of the
polarization of any final baryon on the polarization of any
initial nucleon, vanish. The physical reason is that the sin-
glet np-state, being “closed” with respect to both nucleon
spins, does not contain and does not transmit any infor-
mation on the polarization to the final baryons.
Therefore the predictions

Axx = Ayy = Azz = −1,

Dxx = Dyy = Dzz = 0 (5)

are typical properties for negative P -parity Θ+ production
for n+ p→ Λ0 +Θ+(3/2−) in the threshold region.
Note that the z-axis is taken along the beam direction,

and the axial symmetry of S-wave production results in
the equality of (xx) and (yy) components of all polariza-
tion observables.

2.2 The reaction n+ p → Λ0 +Θ+, jP(Θ+) = 3/2+

The symmetry selection rules (P -invariance, conservation
of the total angular momentum and the validity of the
generalized Pauli principle) result in the following three
partial transitions:

Si = 1, `i = 0 → J P = 1+ → Sf = 1, `f = 0,

Si = 1, `i = 2 → J P = 1+ → Sf = 1, `f = 0, (6)

→ J P = 2+ → Sf = 2, `f = 0.

The corresponding matrix element can be written as

M(+)
Λ = f

(+)
1Λ (χ̃2σyσ · k̂χ1)(χ

† · k̂σyχ̃†3)
+f

(+)
2Λ

[

χ̃2σy(σm − k̂mσ · k̂)χ1

]

(χ†mσyχ̃
†
3) (7)

+if
(+)
3Λ

[

χ̃2σy(σ × k̂)mχ1

]

(χ† · k̂σmσyχ̃†3),
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where f
(+)
iΛ , i = 1, 2, 3 are the partial amplitudes for the

case of positive parity of the Θ+-hyperon. Note that the

amplitude f
(+)
1Λ describes the triplet np interaction in a

state with zero value of total spin projection, but the am-

plitudes f
(+)
2,3Λ describe the np interaction with total spin

projection equal to ±1.
Therefore, the cross-section for polarized n + p colli-

sions can be written as

dσ

dΩ

(+)

(P1 ·P2) =
(

dσ

dΩ

)

0

[

1 +A(+)
1 P1 ·P2 +A(+)

2 k̂ ·P1k̂ ·P2

]

,

D
(+)
Λ A(+)

1 = |f (+)
1Λ |2,

D
(+)
Λ A(+)

2 = 2
(

−|f (+)
1Λ |2 + |f

(+)
2Λ |2 + |f

(+)
3Λ |2

)

, (8)

where D
(+)
Λ = |f (+)

1Λ |2 + 2
(

|f (+)
2Λ |2 + |f

(+)
3Λ |2

)

.

The relation 3A(+)
1 +A(+)

2 = 1, which is correct for any

values of partial amplitudes f
(+)
iΛ , results from the absence

of the singlet np interaction —for the considered case.
One can find from (8)

A(+)
xx = A(+)

yy =
1

2

(

1−A(+)
zz

)

=

|f (+)
1Λ |2

|f (+)
1Λ |2 + 2

(

|f (+)
2Λ |2 + |f

(+)
3Λ |2

) ≥ 0, (9)

which is different from the case of negative P -parity.
The same conclusion holds for the case of the coef-

ficients of polarization transfer. The dependence of the
Λ-polarization PΛ on the initial beam polarization, P (de-
scribed by the two-component spinor χ2) can be written
in the following form, which holds for S-wave production:

PΛ = p
(+)
1 P+ p

(+)
2 k̂(k̂ ·P), (10)

where p1,2 are real coefficients, which can be expressed as
a function of the amplitudes as

D
(+)
Λ p

(+)
1 = 2|f (+)

2Λ |2 − Ref
(+)
1Λ (f

(+)
2Λ + 2f

(+)
3Λ )

∗,

D
(+)
Λ p

(+)
2 = −|f (+)

2Λ |2 + 2|f
(+)
3Λ |2

+Re
[

f
(+)
1Λ f

(+)∗
2Λ +2(f

(+)
1Λ +f

(+)
2Λ )f

(+)∗
3Λ

]

. (11)

Therefore, generally, the polarization transfer coefficients

D(+)
xx = D(+)

yy = p
(+)
1 , D(+)

zz = p
(+)
1 + p

(+)
2

do not vanish, in this case.
In order to have a quantitative estimation of these po-

larization observables, let us consider a simple model for
n+ p→ Λ+Θ+, based on t-channel K-exchange (fig. 1).
Note that only the coherent sum of the two diagrams,

with vertices which satisfy the isotopic invariance, results

Fig. 1. K-exchange for the reaction n+ p→ Λ0 +Θ+.

in a correct spin structure of the threshold matrix element,
see eq. (7). Each diagram generates a spin structure with
a singlet amplitude, which cancels in the final sum. The
final result for the considered mechanism can be written
as

f
(+)
1Λ = −f (+)

3Λ , f
(+)
2Λ = 0. (12)

Let us stress that these predictions do not depend on the
values of the coupling constants gNΛK and gNΘK , and on
the phenomenological form factors which are important
ingredients of this model. These quantities enter in the
calculation of the absolute values of the differential (and
total) cross-section, but not in the predictions for the po-
larization observables.

Substituting eq. (12) in eqs. (8) and (11), one can find

A(+)
xx = A(+)

yy = A(+)
zz =

1

3
,

D(+)
xx = D(+)

yy = −
2

3
, D(+)

zz =
2

3
. (13)

Note that the predicted resultD
(+)
xx = −2/3 coincides with

D
(+)
nn = −2/3, which can be found for ~p+ p→ ~Λ+K+ +

p —in the framework of a similar model, based on K-
exchange, in agreement with the existing DISTO results.
We stress again, that this simple model is taken here only
for illustration.

Another confirmation of the validity of this simple
model, which takes into account only K-exchange for
threshold strange-particle production in pp collisions is the
large value of the ratio σ(pp → ΛK+p)/σ(pp → ΣK+p),
measured in COSY [19].

Considering the similarity of final states in N +N →
Λ + K+ + N and in the reaction of interest here, n +
p → Λ + Θ+ → Λ + K+ + n, one can assume that the
K-exchange model can be applied also here. Of course,
this is not a proof, but a qualitative argument to justify
the model taken here for a quick estimation of polariza-
tion effects in Λ + Θ+(3/2+), with a complicated spin
structure.

The result found here, D
(+)
yy = −2/3, (which is model

dependent in case of jP (Θ+) = 3/2+ ) is very far

from the value D
(−)
yy = 0, which has been found in a

model-independent way for the opposite parity of Θ+, and
shows the level of accuracy which will be necessary, in or-
der to discriminate the different parities of the Θ+-baryon.
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2.3 The reaction p+ p → Σ+ +Θ+, jP(Θ+) = 3/2+

For a positive parity, only one spin transition is allowed
at threshold:

Si = 0, `i = 2→ J P = 2+ → Sf = 2, `f = 0, (14)

to which corresponds the following matrix element:

M(+)
Σ = f

(+)
Σ (χ̃2σyχ1)(χ

† · k̂σ · k̂σyχ̃†3). (15)

The dependence of the differential cross-section on the po-
larizations of the initial nucleons is

dσ

dΩ
(pp→ Σ+Θ+) =

(

dσ

dΩ

)

0

(1−P1 ·P2),

and the polarization transfer coefficients

D(+)
xx (Σ) = D(+)

yy (Σ) = D(+)
zz (Σ) = 0, (16)

i.e. the result is similar to the reaction n + p → Λ0 +
Θ+(3/2−), but with opposite parity!

2.4 The reaction p+ p → Σ+ +Θ+, jP(Θ+) = 3/2−

The selection rules related to the strong interaction allow
the following partial transitions:

Si = 1, `i = 1→ J P = 1− → Sf = 1, `f = 0,

→ J P = 2− → Sf = 2, `f = 0, (17)

Si = 1, `i = 3→ J P = 2− → Sf = 2, `f = 0.

with matrix element

M(−)
Σ =

f
(−)
1Σ (χ̃2σyσ · k̂χ1)(χ

† · k̂σ · k̂σyχ̃†3)
+f

(−)
2Σ

[

χ̃2σy(σm − k̂mσ · k̂)χ1

]

(χ† · k̂σmσyχ̃†3) (18)

+if
(−)
3Σ

[

χ̃2σy(σ × k̂)mχ1

]

(χ†mσyχ̃
†
3).

The dependence of the differential cross-section on the po-
larizations of the colliding nucleons can be written in a
standard form, which holds for S-wave production:

dσ

dΩ

(−)

(pp→ Σ+Θ+) =
(

dσ

dΩ

)

0

[

1 +A(−)
1Σ P1 ·P2 +A(−)

2Σ k̂ ·P1k̂ ·P2

]

(19)

with the following formulas for A1,2Σ :

D
(−)
Σ A(−)

1Σ = |f
(+)
1Σ |2,

D
(−)
Σ A(−)

2Σ = 2
[

−|f (+)
1Σ |2 + |f

(+)
2Σ |2 + |f

(+)
3Σ |2

]

, (20)

with

D
(−)
Σ = |f (−)

1Σ |2 + 2
(

|f (−)
2Σ |2 + |f

(−)
3Σ |2

)

,

i.e.

A(−)
xx (Σ) = A(−)

yy (Σ) = A
(−)
1Σ ≥ 0. (21)

The polarization transfer coefficients can be expressed as
a function of the amplitudes as

P
(−)
Σ = p

(−)
1Σ P+ p

(−)
2Σ k̂(k̂ ·P), (22)

D
(−)
Σ p

(−)
1Σ = Ref

(−)
1Σ (2f

(−)
2Σ + f

(−)
3Σ )

∗, (23)

D
(−)
Σ p

(−)
2Σ = 2|f (−)

2Σ |2 − |f
(−)
3Σ |2 − Re f

(−)
1Σ f

(−)∗
3Σ

−2Re
(

2f
(−)
1Σ − f

(−)
3Σ

)

f
(−)∗
2Σ . (24)

Let us evaluate these observables again in the frame-
work of the above-mentioned K-exchange model for
p+ p→ Σ+ + Θ+. Two Feynman diagrams, in analogy
with those of fig. 1 generate the following relation between

the partial amplitudes f
(−)
iΣ :

f
(−)
2Σ = 0, f

(−)
1Σ = −f (−)

3Σ , (25)

again independent of coupling constants and phenomeno-
logical form factors. This allows to find

A(−)
xx (Σ) = A(−)

yy (Σ) = A(−)
zz (Σ) =

1

3
,

D(−)
xx (Σ) = D(−)

yy (Σ) = Dzz(Σ)
(−) = −1

3
. (26)

3 The reaction N+ N → Y +Θ+(jP), any jP

In this section, we consider the case of any jP for the
Θ+-hyperon, produced in the reactions N+N → Y +Θ+,
Y = Λ- or Σ+-hyperon.

At the reaction threshold, the polarization proper-
ties of the Θ+(jP ) can be described by the q → 0
limit of the corresponding Rarita-Schwinger spinor (q is
the Θ+ three-momentum), more exactly by the following
two-component spinor χa1,...,an

, n = j − 1/2, j ≥ 3/2,
with definite number of vector indices. Such spinor has to
satisfy the conditions

σaχaa2a3,...,an
= 0, χaaa3,...,an

= 0, (27)

χa1a2,...,an
= χa2a1,...,an

,

and this last property guarantees the symmetry with re-
spect to the interchange of any pair of vector indices ai,
i = 1, . . . , n.

Evidently, such construction has 2j + 1 independent
components, as must be the case for a particle with spin j.

We will apply this general formalism, for the descrip-
tion of the polarization properties of a fermion with spin
j, to the process p + p → Σ+ + Θ+ in threshold condi-
tions. The process n+ p→ Λ0 +Θ+ can be considered in
a similar way.
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3.1 The reaction p+ p → Σ+ +Θ+(j+)

In this section we consider the case when the P -parity of
Θ+ is positive. The selection rules allow only one partial
transition:

Si = 0, `i = even → J = `→ Sf = `i, `f = 0, (28)

with the following relation between `i and j:

`i = j − 1
2
, if P (Θ) = (−1)j−1/2,

i.e.

(

jP =
1

2

+

,
5

2

+

,
9

2

+

. . .

)

,

`i = j +
1

2
, if P (Θ) = (−1)j+1/2

i.e.

(

jP =
3

2

+

,
7

2

+

,
11

2

+

. . .

)

. (29)

The first case corresponds to natural (n) parity and the
second to unnatural (u) parity.
The corresponding matrix element can be written as

follows:

M(+) = f (+)(j)(χ̃2σyχ1)(χ
†
4σyχ̃

†
3), (30)

with

χ4=χa1a2,...,an
k̂a1 k̂a2 , . . . , k̂an

, for natural P -parity,

χ4=σ ·k̂χa1a2,...,an
k̂a1 k̂a2 , . . . , k̂an

, for unnaturalP -parity,

where f (+)(j) is the partial amplitude, depending on the
Θ spin j.
Independently of the value of the Θ+ spin j, from the

matrix element (30) one derives the general form for all
double-spin polarization observables:

dσ

dΩ

(+)

(j) =

(

dσ

dΩ

)

0

(1−P1 ·P2),

D(+)
xx (j) = D(+)

yy (j) = D(+)
zz (j) = 0, (31)

due to the “closed” initial singlet pp-state.

3.2 The reaction p+ p → Σ+ +Θ+(j−)

The case of negative P -parity must be treated separately,
for natural- and unnatural-parity states.

3.2.1 Natural P -parity

For jP =
3

2

−

,
7

2

−

, . . . the following partial transitions are

allowed:

Si = 1, `i = j − 1
2
→ J = j − 1

2
→ Sf = j − 1

2
,

→ J = j +
1

2
→ Sf = j +

1

2
, (32)

Si = 1, `i = j +
3

2
→ J = j +

1

2
→ Sf = j +

1

2
,

with the corresponding spin structure of the matrix ele-
ment:

M(−)
n (j) = f

(−)
1n (j)(χ̃2σyσ · k̂χ1)(χ

†
4σ · k̂σyχ̃†3)

+if
(−)
2n (j)

[

χ̃2σy(σ × k̂)mχ1

]

(χ†4mσyχ̃
†
3), (33)

+f
(−)
3n (j)(χ̃2σyσmχ1)

[

χ†4(σm−k̂mσ ·k̂)σyχ̃†3
]

,

where f
(−)
in (j), i = 1–3, are the independent par-

tial amplitudes and χ4 ≡ χa1a2,...,an
k̂a1 k̂a2 , . . . , k̂an

,

χ4m ≡χma2,...,an
k̂a2 , . . . , k̂an

.

3.2.2 Unnatural P -parity

The case jP =
1

2

−

,
5

2

−

, . . . generates the following set of

triplet transitions:

Si = 1, `i = j − 3
2
→ J = j − 1

2
→ Sf = j − 1

2
,

Si = 1, `i = j +
1

2
→ J = j − 1

2
→ Sf = j − 1

2
, (34)

→ J = j +
1

2
→ Sf = j +

1

2
,

with the corresponding matrix element:

M(−)
u (j) = f

(−)
1u (j)(χ̃2σyσ · k̂χ1)(χ

†
4σyχ̃

†
3)

+if
(−)
2u (j)

[

χ̃2(σ × k̂)mχ1

]

(χ†4σmσyχ̃
†
3) (35)

+f
(−)
3u (j)

[

χ̃2(σm − k̂mσ · k̂)χ1

]

(χ†4mσyχ̃
†
3).

Equations (33) and (35) allow to express the coefficients

A(−)
i (j), i = 1, 2, in terms of the partial amplitudes

f
(−)
in (j), or (f

(−)
iu (j)):

A(−)
1 (j) =

|f (−)
1 (j)|2

|f (−)
1 (j)|2 + 2(|f (−)

2 (j)|2 + |f (−)
3 (j)|2

,

3A(−)
1 (j) +A(−)

2 (j) = 1, (36)

(the indices u and n are not indicated in these formulas).
One can see that for any j, the negative parity of the

Θ-hyperon results in

A(−)
xx (j) = A(−)

yy (j) ≥ 0. (37)

In the general case, the numerical value of the asymmetries
depend on j, being, however, positive. This holds for the
process p+ p→ Σ+ +Θ+.
Note, finally, that in the K-meson exchange model

(which is taken here for illustrative purposes), one can
find

f
(−)
2 (j) = 0, f

(−)
1 (j) = ±f (−)

3 (j) 6= 0, (38)

where the sign ± corresponds to natural or unnatural
P -parity, with the following universal result for any j:

A(−)
xx (j) = A(−)

yy (j) = A(−)
zz (j) =

1

3
, (39)

i.e. in this model the asymmetries do not depend on j.
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4 Conclusions

We calculated double-spin polarization observables in the
simplest processes of Θ+ production in NN collisions,
n+p→ Λ0+Θ+ and p+p→ Σ++Θ+. We proved that the
spin correlation coefficients Axx and Ayy (in the collisions
of transversally polarized nucleons) and the polarization
transfer coefficient Dyy (characterizing the transversal po-
larization of the final hyperon, Σ+ or Λ0 self-analyzing
particles, emitted in the collision of a polarized (unpolar-
ized) nucleon beam with unpolarized (polarized) nucleon
target) can be considered as model-independent filters for
the determination of the P -parity of the Θ+-hyperon,
whatever value takes its spin.
We found that the spin structure of the matrix element

is essentially different for different parities. Whereas only
the singlet amplitude is present in p + p → Σ+ + Θ+,
for positive parity and any spin, for the process n + p →
Λ0 +Θ+ the singlet amplitude is associated to a negative
parity (for any spin).
In the same formalism, we established that the process

p + p → Σ+ + Θ+(j−) is characterized by three triplet
amplitudes, for any j, j ≥ 3/2. Similar triplet amplitudes
define the spin structure of the threshold matrix element
for n+ p→ Λ0 +Θ+, in case of positive Θ+ parity.
We stress once more that the functional forms of the

spin structure and polarization phenomena in both reac-
tions n+ p→ Λ0 +Θ+ and p+ p→ Σ+ +Θ+, have been
done in a model-independent way, using only the general
selection rules which hold for strong interaction, as con-
servation of total angular momentum, isotopic invariance,
Pauli principle.
This allowed us to generalize the previously proposed

methods for the Θ+ parity determination in the case of
j = 1/2 to any value of the spin. The main result of this
work can be formulated as follows: the sign of the asym-
metry Ayy (which is different for p + p → Σ+ + Θ+ and
n + p → Λ0 + Θ+) is uniquely related to the Θ+ par-
ity, independently of its spin j. This is also correct for
the polarization transfer coefficient Dyy: a value equal or
different from zero of this coefficient is an unambiguous
signature of the discussed P -parity.
Numerical estimations of these polarization observ-

ables were done using a simple but realistic dynamical
model, for the considered reactions, based on K-meson

exchange. In the framework of this model, the relations
among the threshold partial amplitudes are independent
of the coupling constants for the vertices of the consid-
ered Feynman diagrams and of the parametrization of the
phenomenological form factors, quantities which enter in
the calculation of the differential cross-section. Polariza-
tion phenomena do not depend on these ingredients of the
model, but are more sensitive to more general properties
of the reaction mechanism, such as the quantum numbers
of the exchanged particles.
The polarization phenomena discussed here are

T -even, so they do not vanish even in the framework of
a simple model, with real amplitudes. Moreover they are
not very sensitive to the effects of initial- and final-state
interaction.
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